Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors.

نویسندگان

  • Geoffrey R Hutchison
  • Mark A Ratner
  • Tobin J Marks
چکیده

For electron or hole transfer between neighboring conducting polymer strands or oligomers, the intrinsic charge-transfer rate is dictated by the charge-resonance integral and by the reorganization energy due to geometric relaxation. To explain conduction anisotropy and other solid-state effects, a multivariate, systematic analysis of bandwidth as a function of intermolecular orientations is undertaken for a series of oligoheterocycles, using first-principles methods. While cofacial oligomers show the greatest bandwidths at a given intermolecular C-C contact distance, for a fixed center-to-center intermolecular distance, tilted pi-stacking increases pi-overlap (particularly for LUMO orbitals) and decreases electrostatic repulsion, yielding optimum tilt angles for packing of approximately 40-60 degrees at small intermolecular separations. The calculations also reveal that bandwidths and intrinsic mobilities of holes and electrons in conjugated oligoheterocycles can be quite comparable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical characterization of titanyl phthalocyanine as a p-type organic semiconductor: short intermolecular pi-pi interactions yield large electronic couplings and hole transport bandwidths.

The charge-transport properties of the triclinic phase II crystal of titanyl phthalocyanine (alpha-TiOPc) are explored within both a hopping and bandlike regime. Electronic coupling elements in convex- and concave-type dimers are calculated using density functional theory, and the relationship between molecular structure and crystal packing structure in model dimer configurations is considered....

متن کامل

Field Dependent Charge Carrier Transport for Organic Semiconductors at the Time of Flight Configuration

In this paper, we used the time-of-flight (TOF) of a charge packet, that injected by a voltage pulse to calculate the drift velocity and mobility of holes in organic semiconducting polymers. The technique consists in applying a voltage to the anode and calculating the time delay in the appearance of the injected carriers at the other contact. The method is a simple way to determine the charge t...

متن کامل

Monte Carlo Studies of Charge Transport Below the Mobility Edge

Charge transport below the mobility edge, where the charge carriers are hopping between localized electronic states, is the dominant charge transport mechanism in a wide range of disordered materials. This type of incoherent charge transport is fundamentally different from the coherent charge transport in ordered crystalline materials. With the advent of organic electronics, where small organic...

متن کامل

Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport.

Organic semiconductors based on pi-conjugated oligomers and polymers constitute the active elements in new generations of plastic (opto)electronic devices. The performance of these devices depends largely on the efficiency of the charge-transport processes; at the microscopic level, one of the major parameters governing the transport properties is the amplitude of the electronic transfer integr...

متن کامل

Modelling charge transport in organic semiconductors with a fragment-orbital based surface hopping method

Charge transport in organic semiconductors is an important current topic of research, but the exact nature of the charge transport remains an unresolved question. Experimental evidence exists to support either of two common models (band-like transport or small polaronic hopping) and various computational simulations suggest that for the standard parameter ranges for organic semiconducting devic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 48  شماره 

صفحات  -

تاریخ انتشار 2005